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ABSTRACT 
 
 
 

 Budget limitations have reduced the number of military components available for 

testing, and time constraints have reduced the amount of time available for actual testing 

resulting in many items still operating at the end of test cycles.  These two factors 

produce small test populations (small sample size) with heavily censored data.  The 

assumption of normality for estimates based on these small sample sizes reduces the 

accuracy of confidence bounds of the probability plots and the associated quantities.  This 

creates a problem in acquisition analysis because the confidence in the probability 

estimates influences the number of spare parts required to support a mission or 

deployment or determines the length of warranty ensuring proper operation of systems.  

This thesis develops a method that simulates small samples with censored data and 

examines the error of the Fisher-Matrix (FM) and the Likelihood Ratio Bounds (LRB) 

confidence methods of two test populations (size 10 and 20) with three, five, seven and 

nine observed failures for the Weibull distribution.  This thesis includes a Monte Carlo 

simulation code written in S-Plus that can be modified by the user to meet their particular 

needs for any sampling and censoring scheme. To illustrate the approach, the thesis 

includes a catalog of corrected confidence bounds for the Weibull distribution, which can 

be used by acquisition analysts to adjust their confidence bounds and obtain a more 

accurate representation for warranty and reliability work.   
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EXECUTIVE SUMMARY 
 
 

 Shrinking budgets have affected all aspects of military hardware testing including 

the number of items that are procured for test in order to establish and verify their 

reliability.  The amount of time given to test specific items has been reduced to shorten 

the acquisition time.  These two factors contribute to fewer numbers of test items put into 

a test scenario with even a smaller number of failures occurring during the allotted test 

time.   

 The few failures that occur during the test period provide valuable information to 

analysts, but the ones that don’t fail (the survivors at the end of the allotted test time) may 

provide even more information.  The items that survive the test period are referred to as 

“censored” and in particular, the items whose testing begins at the same time and ends 

when the allotted test time is completed is referred to as “time-censored” or Type I 

censored data.  Another common type of censored data is “failure censored” or Type II 

and may be thought of as ending the test when a predetermined number of failures have 

occurred.  Estimates based on Type II censoring are often used to generate estimates 

under Type I censoring because the tester can control the number of failures and hence, 

the number of censored items. 

 Many current software packages such as Weibull++, S-Plus, and Minitab allow 

the analyst the ability to specify the total number of test items put into test, the times of 

the failures for any items, and the number of censored items (items still running at the 

end of the test time).  The software packages listed above are based on large sample 

theory, yet users readily apply the analysis to a small sample size with heavily censored 

data with little regard to the inherent error.     

 This assumption of normality due to large sample size, when applied to testing 

based on  small sample sizes, has been known for decades to provide errors in the system 

reliability estimates and the confidence associated with those estimates.  These errors 

were tolerated as minor, but in today’s economy of doing more with less, the government 

must be a good steward of its money and demand more accurate results from the limited 

assets it’s given.   
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 The confidence associated with a system reliability estimate influences the number 

of spare parts required to support a mission or deployment or determines the length of 

warranty ensuring proper operation of systems.  To ensure accurate confidence in small 

sample testing, this thesis develops a Monte Carlo methodology for the Weibull 

distribution, simulating small samples with censored data and examines the error of two 

commonly used methods to determine confidence bounds for reliability:  1. the Fisher-

Matrix (FM) method and 2. the Likelihood Ratio Bound (LRB) method.  Tables are 

provided that summarize the graphical output of the simulation code and quantify the 

difference between the two methods, with the end result of providing the user a more 

accurate method.  

 A simulation method is used in this thesis to quantify the bias in confidence bounds 

for reliability that one obtains when using software packages based on large sample 

theory and applies that analysis to small sample size tests.  A simulation of two small-

sample test populations (sample size of 10 and 20) is used with three, five, seven and nine 

observed failures for the Weibull distribution.  Type II censoring is used during the 

simulation by specifying the number of failures that occur out of the total sample size.  

The S-Plus code by default performs a 10000 iteration, Monte Carlo simulation for each 

test case and produces a graph for the more often used Fisher-Matrix (FM) confidence 

method.  A catalog (Appendix B) is developed that can provide the user a more accurate 

confidence that they can use in their acquisition documents for many common 

reliabilities and censored data combinations. 

 A detailed process is presented that leads a user through an example clarifying the 

simulation process.  This example provides an avenue for the user to take advantage of 

the attached catalog showing several common reliability levels and confidence bounds 

for the Weibull distribution, and allows them to literally ‘pick-off’ the adjusted 

confidence bounds for their particular situation.  In addition, the documented S-Plus code 

is included that can be modified to meet the users requirements allowing the graphs to be 

tailored to specific needs. 

 The errors produced by the naïve use of large sample methods are substantial when 

applied to small samples.  A requested 90% lower confidence bound on reliability in 



 xvii

typical software packages may only provide an actual 75% coverage for small samples.  

This thesis corrects that error by allowing the user to request a corrected nominal 

confidence level for small sample testing to achieve the true desired coverage when using 

software packages that are based on the “large sample theory”.  For example, we may 

need to request a 99.2% confidence level to actually get a 90% coverage, for a given 

sample size and censoring scheme. 

 This ability to correct for the error in the confidence levels allows us to continue to 

use existing software tools, but to use them better. 
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I. INTRODUCTION 

A. OVERVIEW 
 Confidence intervals (CI) in life data analysis are an indication of the degree of 

confidence that the analyst presents along with the statistical data.  It is his “confidence” that a 

specific interval contains the quantity he is interested in.  As stated quite nicely in their text on 

reliability methods, Meeker and Escobar said [Ref: 3, p.49],  

A specific interval either contains the quantity of interest or not; the truth is 
unknown.   

Therefore, the confidence interval quantifies the uncertainty, but as Nelson states in his 

book on applied life data analysis [Ref: 4, p.196],  

The real uncertainty is usually greater than the confidence interval indicates 
because the interval is based on certain assumptions about the data and the 
model…Departures from the assumptions add to the uncertainties in the results.  

Most statistical analysis (and life data analysis) assumes asymptotic normality of 

estimators based on large sample size theory, but as seen in recent acquisition testing, the 

government rarely has large numbers of test articles.  Small sample sizes are especially prevalent 

in Developmental Testing (DT) and Operational Testing (OT) in procuring, testing, and buying 

major weapon systems.  In addition to a small number of test articles that are provided for 

testing, the contractors generally have good in-house reliability programs that result in few 

failures during the test period; this leads to censored data.   

Even if a sufficient number of test items are available to meet the criteria of the large-

sample size theory, the number of failures need to be large [Ref: 3, p.186], not just the number of 

test items.  As Nelson points out in his book on accelerated testing [Ref: 1, p.236],  

Such asymptotic theory is also called large-sample theory.  This terminology is 
misleading for multiply and singly censored data, since the number of failures 
needs to be large.  In practice, the asymptotic theory is applied to small samples, 
since crude theory is better than no theory.   

 This error in confidence bounds for system reliability using small sample sizes has been 

known and accepted for years.  The impact of these errors in today’s climate of ‘doing more with 
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less’ and ‘the sooner the better’ impacts all aspects of life cycle cost estimation and possibly 

even mission capability. Budget limitations and time constraints force the tester to use a smaller 

number of test items with less time to test them, which in turn results in a small sample size that 

is heavily censored.  The analyst must then apply statistical methods that are inherently biased 

for small samples.  In his text on probability and statistics, Devore reflects on his concerns about 

using asymptotic methods on small samples when the distribution is non-normal [Ref: 5, p.302],  

It would certainly be distressing to believe that your confidence level is about 
95% when in fact it is really more like 88%! 

 The government as a consumer should get the confidence it pays for and this thesis 

allows for the correct adjustment to the contractual documents before products are purchased.  

Most commercial software packages (Weibull ++, Minitab, WinSmith, S-Plus) available for life 

data analysis use a normal-approximation method to determine the confidence intervals even for 

small sample sizes because the large-sample approximations are computationally easy. [Ref: 3, 

p. 186, Ref: 6, p. 135].   

 Many researchers have documented that a bias exists with small samples and have 

focused on finding new methods to improve the coverage of confidence intervals for reliability 

estimates(e.g. Nelson (1982), Piergorsch (1987), Ostrouchov and Meeker (1988), Vander Weil 

and Meeker (1990), Doganaksoy and Schmee (1993), Shao and Tu (1995), Jeng and Meeker 

(2000) [Ref: 6, p.135-136]).    

 This thesis suggests using existing methods better by correcting for the bias in existing 

commercial software products.  

B. PURPOSE 
 The purpose of this thesis is to document the error in confidence interval coverage for 

reliability estimates based on data from a Weibull distribution between the Fisher-Matrix (FM) 

and Likelihood Ratio Bounds (LRB) methods by conducting a simulation study and constructing 

graphs and tables that indicate the extent of the problem.  A 10000 iteration, Monte Carlo 

simulation will be used to produce graphs that analysts can use to convert the nominal (1-α) 

100% 1-sided confidence bounds into  confidence bounds with actual (1-α) 100% coverage.  In  
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addition, the S-Plus code using the embedded SPLIDA routine [Ref: 2] that was written for the 

simulation study is included in Appendix A and allows users to tailor a simulation to fit their 

specific needs.   

 Once the error is known, it can be corrected by applying an appropriate adjustment, 

resulting in the desired coverage level.  This correction is determined both graphically and 

numerically.   

C. SCOPE AND LIMITATIONS  
 Most texts on life data analysis related to reliability and warranty calculations suggest 

that using the large sample approximations to get approximate confidence intervals is good for 

quick and easy calculations [Ref: 3, p.165], but more accurate procedures are required for formal 

proposals and final reports. This thesis performs a Monte Carlo simulation study using 10000 

iterations determining actual  ‘coverage probabilities’ of confidence intervals for system 

reliability based on  small samples and heavily censored data.  These actual coverage 

probabilities can be used to correct the error in the asymptotic methods, providing the accurate 

procedures desired for formal proposals and final reports. 

 This simulation method works for any location-scale or log-location-scale distribution.  

This thesis uses Weibull for simplicity, but the simulation code can be adapted for lognormal, 

normal, smallest extreme value, exponential, and logistic distributions.    

 The thesis focuses on using a simulation code to quantify the error between the two 

confidence methodologies that were developed for large samples but are applied to small 

samples and will be limited to calculating the exact lower, one-sided confidence interval for the 

following test cases: 

 Typical reliability values of 99, 98, 97, 96, 95, and 90 will be used in the simulation 

study. 

 Small sample sizes of 10 and 20 with 3, 5, 7, and 9 observed failures will be used for 

each reliability value. 

 The Weibull location-scale distribution with fixed parameters will be used exclusively for 

this simulation study. 
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 In addition, the Fisher-Matrix (FM) bounds and Likelihood Ratio Bounds (LRB) methods 

will be compared to obtain the bias in confidence interval coverage.  Results of the comparison 

will be documented in tables and will establish which method has the most error.  A catalog of 

the method with the most error will be attached as Appendix B for user convenience.   

 And finally, the S-Plus code for the Monte Carlo simulation will be attached as Appendix 

A allowing users to tailor the simulation output for their specific application.  The attached S-

Plus code also provides the user a subroutine that states the exact confidence level they must 

request requested in order to obtain the desired coverage, for a given sampling size, censoring 

scheme, and distribution.  This eliminates the need to estimate the required value using the 

graphs in Appendix B. 
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II. BACKGROUND 

A. LIFE DATA ANALYSIS 
 Life data analysis seeks to understand the data at hand obtained from a sample of test 

articles (descriptive statistics) and then apply the results to the entire population of test articles 

(inferential statistics).  This section is provided as background material to focus the reader on the 

specific terms, procedures and definitions used in this thesis and provide a common background 

for users who want to tailor the S-Plus code for their specific application. 

1. Confidence Bounds Defined 
 To compute a confidence interval from a given data set, you must first specify a 

confidence level.  For example, if a data set consists of n  observations assumed to have a normal 

distribution with known variance and unknown mean and if you want to find the 95% confidence 

interval for the mean, the equation for the confidence interval endpoints (confidence bounds) 

would look like (lower endpoint, upper endpoint) and is represented mathematically as: 

⎟
⎠

⎞
⎜
⎝

⎛ +−
n

zx
n

zx σσ
αα *,*   22     (2.1) 

where σ is the known standard deviation, x  is the mean of the data, α is (1 - .95) and n is the 

number of observations.  The value of 1.96 (used for 2αz ) is obtained from the standard normal 

probability tables and represents the critical value under the normal curve that leaves the center 

area equal to .95 (the level of confidence desired).  The area under the tails is the (1 - .95)*100% 

= 5% that is equally divided for symmetric distributions (shown in Figure 1).  The equal 

distribution of the confidence on either end of the probability curve displayed in Figure 1 is only 

correct for a symmetric distribution such as the normal family.   

 According to Devore in his text on probability and statistics [Ref: 5, p. 281], the correct 

interpretation of this 95% confidence bound is true only over the long run,  

To say that an event A has probability (of) .95 is to say that if the experiment on 
which A is defined is performed over and over again, in the long run A will occur 
95% of the time. 
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 In other words, the 95% confidence level is not so much a statement of fact about any 

specific interval, but represents what would happen if a large number of similar events took 

place.  This statement leads to the Monte Carlo technique of using 10000 iterations in the 

simulation study used in this thesis. 

 

-1.96 1.960 Z

2.5%2.5%

 
Figure 1.   Two-sided 95% confidence interval symmetrically distributed around the mean 

for a normal distribution. 
 
2. One-Sided Confidence Bounds 

 Most reliability and warranty analysts use a one-sided confidence interval for reliability 

[Ref: 5, p.292] because they are interested in estimating the reliability with some confidence that 

the actual value is at least as large as that lower bound.  In terms of risk, a one-sided interval 

establishes, with some confidence, the largest (or smallest) plausible value.  For a symmetric 

distribution like the normal curve, the adjustment between a two-sided and a one-sided CI is 

made by replacing 2αz  with αz  and choosing the appropriate end of the distribution (either the + 

or the – in Eq. 2.1).  Now the single area to the right of the critical value 1.64 represents (1 - 

.95)*100% = 5% as shown in Figure 2. 

3. Non-Symmetric Life Distributions in Small Samples 
 When the sample size is small, the sampling distribution of an estimator may be skewed 

(a non-symmetric distribution) [Ref: 3, p.56] and using the normal approximation for confidence 

levels near either tail of the distribution may give a substantial error. 
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5 % 

1.64 Z 
0  

Figure 2.   One-sided upper 95% confidence interval for the mean for a normal distribution. 
 
4. Censoring 

 When several items are put into a test environment, either simultaneously or sequentially, 

not all of the units may fail by the end of the test.  The survivors (unfailed units) are called 

censored, in that incomplete failure information is available; you only know they were still 

functioning at the end of the allotted test time. Type I censoring is generally considered as 

removing unfailed units from a test at a prescribed time (i.e. at the end of the allotted test time).  

Type I is also called “time censoring” by some authors and is considered to be the more common 

type of censoring in reliability data analysis. [Ref: 3, p.7; Ref: 6, p.1]  Type II censoring is called 

“failure censoring” and is based on ending the test when a predetermined number of failures 

occur.  

5. The Weibull Distribution 
 The Weibull distribution is a parametric distribution that is valuable in modeling certain 

life data.  The benefit of using parametric models is that the distribution can be expressed 

entirely by just a few parameters.  Caution should be used in referencing texts in probability and 

statistic theory that explain the Weibull distribution as the notation representing the shape and 

scale parameters are not standardized.  This thesis uses the parameters β and η for the shape and 

scale respectively as is shown in Meeker and Escobar’s text on statistical methods for reliability 

data [Ref: 3, p. 85].  The following equation is the probability density function (pdf) for the 

Weibull distribution using β and η: 

0, and ,0  ,exp),;( 1 >≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − ηβ

ηη
βηβ

β
β

β ttttf    (2.2) 
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Integrating the pdf with respect to the independent variable (t) yields the easily recognized 

cumulative distribution function (cdf) for the Weibull distribution:  

0  ,exp1)( ≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= tttF

β

η
    (2.3) 

The system reliability R(t) is the probability that an item survives past time t and is defined as 

R(t) = 1 – F (t). 
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Figure 3.   Weibull probability density functions for different shape parameters with a fixed 

scale parameter. 
 

 Figure 3 shows that changing the value of the shape parameter allows the Weibull 

distribution to model many different types of behavior.  The Weibull distribution can have either 

a decreasing or an increasing hazard function depending on the choice of parameters making it 

the “workhorse” of life data analysis because of its wide application. [Ref: 3, p.173]   
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 The hazard function is defined as the “propensity for an item to fail in the next small 

interval of time, given that the item has survived until some time (t)” [Ref: 3, p. 28] and is given 

by the equation h(t) = f(t)/(1-F(t)), where f(t) is the probability density function (pdf) and F(t) is 

the cumulative distribution function (cdf).  The following set of plots in Figure 4 use the same 

shape parameter values as the Weibull probability density functions above, but displays the 

hazard function. 

 

0 1 2 3 4
t

3

7

H
az

ar
d

Weibull Hazard, beta = .5

0 1 2 3 4
t

0.6

1.2

H
az

ar
d

Weibull Hazard, beta = 1

0 1 2 3 4t
0

2

4

6

8

H
az

ar
d

Weibull Hazard, beta = 2

0 1 2 3 4
t

0

1000

2000

3000

H
az

ar
d

Weibull Hazard, beta = 5

 
Figure 4.   Weibull hazard functions showing the effect of changing the shape parameter 

with a fixed scale parameter. 
 
6. Fisher-Matrix Method 
Confidence intervals (and hence the confidence bounds) can be calculated for parameters 

of the Weibull distribution in a manner similar to that shown for the normal distribution in 

Equation 2.1.   Typical software packages for life data analysis use the normal-approximation 

method because it’s fast and easy.  The best practice for finding the confidence interval for the 

shape parameter β is to perform a logarithmic transformation on the estimator β̂  to improve the 
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symmetry of its sampling distribution, and then approximate the sampling distribution of 

( )β̂ln by a normal distribution.  The confidence bounds then become,  

[ ] [ ]WWUupperboundLlowerbound ∗= ββ ˆ,/ˆ)(),(    (2.4) 

where [ ]βσ βα
ˆ/ˆexp ˆ)2/1( −= zW  and )ˆ(ˆˆ ˆ βσ

β
raV= .  The value for )ˆ(ˆ βraV  is obtained from the 

parameter variance-covariance matrix that is calculated in the analysis software using the 

standard maximum likelihood estimates (MLE) [Ref: 3, Appendix B].  For a symmetric 

distribution such as the normal, the adjustment between a two-sided and a one-sided CI is made 

by replacing 2αz  with αz  and choosing the appropriate end of the distribution (either the upper 

bound or the lower bound in Eq. 2.4).  Similar adjustments are made to compute confidence 

intervals for other parameters and functions of parameters, such as reliability.   

7. One-Sided Confidence Bounds for the Weibull Distribution Using the 
Likelihood Ratio Method  

 Confidence intervals based on a symmetric sampling distribution produce equal values in 

the tails of the probability density functions (pdf).  However, often the sampling distribution for 

an estimator (such as β̂  ) is not symmetric.  The usual sampling distribution in most practical 

applications takes a shape similar to the southeast corner example in Figure 3.  To find the 

approximate two-sided confidence interval, the relative likelihood is used.  The justification for 

this approach is presented in various texts [Ref: 3, p. 627] and leads to the following equation for 

determining a two-sided confidence interval: 

[ ]2/exp)( 2
)1;1( αχθ −−≥R     (2.5) 

where )(θR  is the ratio of the likelihood function of a single parameter (theta) divided by the 

likelihood evaluated at the maximum likelihood value of the parameter.  Values of the Chi-

Squared distribution are available in tables in most statistic texts.   

 The technique for finding the two-sided interval can be envisioned as plotting the relative 

likelihood (on the left y-axis) against the values of the estimated parameter while simultaneously 

plotting the confidence levels (on the right y-axis).  The value of Eq. 2.5 determines a horizontal 

line that intersects the graph of the relative likelihood function (see Figure 5).   The vertical lines 
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drawn from the intersections of the horizontal line and the relative likelihood, down to the x-axis, 

determine the confidence interval endpoints.  
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Figure 5.   2-Parameter Weibull likelihood distribution showing a 95% confidence level 

(horizontal line) and confidence bounds (vertical lines) of (1.897, 4.772)  [Ref: 3, p. 
181]  

(Note that the area is not symmetrically distributed between 
the upper and lower bounds.) 

 

 This thesis is interested in finding the one-sided confidence bound of for reliability based 

on a Weibull distribution as is often used in reliability measurement and warranty calculations.  

A one-sided confidence interval for θ can be obtained from Eq. 2.5 by replacing α with 2α and 

drawing the horizontal line in Figure 5 at the value where 

[ ]2/exp)( 2
)1;21( αχθ −−≥R     (2.6) 

 Then, choosing the correct endpoint from the x-axis of relative likelihood graph, you can 

obtain either the lower or the upper, one-sided confidence bound.   This is the usual practice for 

one-sided likelihood ratio confidence bounds. [Ref: 3, p. 186] 
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 This approach extends to distributions that have more than one parameter and to 

functions of parameters, and is discussed extensively by Meeker and Escobar [Ref: 3, Chapter 8].  

The key point is that the relative likelihood is asymmetric, and so two-sided intervals using it 

have better coverage properties than the FM method.  For one-sided confidence intervals, use of 

Equation 2.6 still presents problems as it assumes that the confidence is distributed evenly 

between the upper and lower tails of the region.  This is not the case, and is the source of the 

problems for this method when applied to one-sided intervals. 
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III. METHODOLOGY 

A. SIMULATION 
 This thesis uses a reliability software package called S-Plus [Ref: 7] to simulate small 

sample size experiments with few failures.  S-Plus uses an attached life data analysis routine 

called SPLIDA [Ref: 2] that performs the life data analysis.  The S-Plus software package was 

chosen because of its wide application in the study of probability and statistics, its built-in life 

data analysis package, and the fact that S-Plus has the capability of user defined ‘functions’ that 

can be run for a large number of trials, hence the basis for the simulation study.   

 A simulation code (Appendix A) was written in S-Plus for the Weibull distribution that 

takes the location-scale parameters, beta (β) and eta (η), the number of items under test (n), an 

alpha (α) where (1- α)* 100% is the reliability required for a product (target or contractual), and 

the number of failures (f) recorded during the test time.  The code first derives the true value of 

the quantile for the Weibull distribution using the given parameters and uses that value for 

comparing whether the result of each iteration yields a CI that contains that true value.  If the 

true value is contained within the interval, a counter is incremented by one; if it is not contained 

within the interval it is not incremented.  The ratio of the count to the number of iterations is an 

unbiased estimate of the probability coverage [Ref: 3, p. 49] and is plotted for each reliability 

value.  An example of probability coverage is shown in the figures below. 

 Figure 6 is a graph of 40 simulations of a sampling from a normal distribution [Ref: 9] 

with a two-sided 95% CI for the mean calculated for each simulation.    Compare that to Figure 

7, which shows the same simulation run with a 90% CI.  The width of each interval with 90% 

coverage is smaller than that of the 95% CI.  Finally as a comparison, Figure 8 shows a 95% CI 

but with a larger sample size; it shows a small interval as well.  The probability coverage 

represents a useful tool to determine if the value of interest falls within the CI and to quantify the 

coverage. 
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Figure 6.   A 95% confidence interval for normally distributed data with a sample size of 10, 

showing one of the 40 CI’s doesn’t contain the true value for an observed coverage of 
95%.  [Ref: 9] 

 

 
Figure 7.   A 90% confidence interval for normally distributed data with a sample size of 10, 

showing four of the 40 intervals do not contain the true value for an observed 
coverage of 90%. [Ref: 9] 
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Figure 8.   A 95% confidence interval for normal distributed data with a sample size of 20, 

showing that two of the 40 intervals do not contain the true value for an observed 
coverage of 95%. [Ref: 9] 

 

 The initial S-Plus code determined the probability coverage using both the Fisher-Matrix 

(FM) and the Likelihood Ratio Bound (LRB) methods and compared the two methods by 

simultaneously plotting them on the same graph.  Even though both procedures are known to be 

inaccurate for small sample sizes with censored data, Meeker states [Ref: 3, p.165],  

The computationally demanding likelihood procedure can be expected to provide 
better intervals (i.e. an actual coverage probability closer to nominal confidence 
level). 

B. APPLICATION 
 The purpose of the simulation study was to quantify the bias between the two confidence 

methods and to develop tables showing the error.  Then, the method with the greatest error was 

chosen to produce a catalog of graphs representing typical reliabilities often found in military 

contracts.  The reliability is a required input to the simulation code that produces a separate 

graph for each value.  The reliabilities chosen for this thesis were 99, 98, 97, 96, 95 and 90%.  

The numbers of items available for test (sample size of 10 and 20) establish the test population 
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and the numbers of failures that occur within each of the test populations (3, 5, 7, and 9) 

establish the amount of censoring.  The confidence levels are not a required input to the 

simulations but are produced as a result of the S-Plus code for the two standard methods listed.   

 The output of the simulation produces a graph for each of the input variables (six 

reliabilities (times) two populations (times) four levels of censoring) resulting in a catalog of 48 

graphs representing typical values found in most reliability and warranty specifications.  Some 

graphs in this thesis display both of the two confidence methods simultaneously on each graph 

(see Figure 9 below for typical graph display) and allows a comparison between the two methods 

and is used to graphically display the error and differences between the two methods.   
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Figure 9.   Example graph generated in S-Plus using a 1200 iteration Monte Carlo simulation 

showing the simultaneous plots of the FM and LRB methods. 
 

 The dashed line (red) on each graph is the simulation output of the one-sided confidence 

bound using the FM method and the blue line (solid) is the output using the LRB method.  Most 

of the available software packages for life data analysis use the normal-approximation (Fisher-
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Matrix) method with appropriate transformations to achieve symmetry but Meeker and Escobar 

assert that the likelihood ratio method is more accurate [Ref: 3, p. 165].  This thesis supports 

their assertion. 
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Figure 10.   Expanded view of a typical graph showing the intersection of the actual coverage 

with each method and the resulting requested coverage.   
 

 The catalog of graphs is contained in Appendix B and only shows the more inaccurate 

Fisher-Matrix (FM) method.  It is divided into six sections; one section for each reliability value 

with each section sub-divided by the sample size with a graph for each censoring level.  The user 

need only turn to the appendix and select the correct reliability, find the sample size of interest, 

and locate the graph with the appropriate number of failures (censoring). The user then draws a 

horizontal line from the y-axis (Actual Coverage) to either one of the two confidence methods 

(solid or dashed lines), then down to the x-axis (Requested Coverage) to read the amount of 

confidence they require to have in order to get what he requests (see Figure 10).  The black 

diagonal line across the middle of each graph is the theoretical value where the “Requested 

Confidence” equals the “Actual Confidence”.  In other words, if we had a large enough samples 

and no censored data, both of the confidence methods would lie close to that line.   
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 Figure 10 shows that as a result of running the simulation, that if the user needed an 

actual 80% one-sided confidence bound, they would have to request a 92% confidence bound 

using the LRB method and would need to request a 96% confidence bound using the FM method 

for this sample size and censoring scheme. 

 Figure 11 incorporates a modified S-Plus code that draws the line on the graph and 

displays the adjusted confidence bounds below the x-axis.  The graph indicates that for an actual 

90% coverage, you must request 92.16% for the LRB method and 96.4% for the FM method. 

 

Actual vs. Requested MLE coverage for N= 1200 , n= 52 , and f = 23
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Figure 11.   Example graph generated in S-Plus using a modified code that displays the 
required values and automatically draw the lines. 
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IV. RESULTS 

A. INTRODUCTION 
 A summary of the relevant features that support the initial propositions of this thesis is 

included in this chapter, along with a detailed explanation of the simulation output using one of 

the figures as an example.  In addition, a brief discussion of the S-Plus code written for this 

thesis is presented for users who may need to modify the simulation to include different test 

sample sizes, different distributions, or different amounts of censoring that were not performed 

as part of this study.  An example is included at the end of this chapter demonstrating the 

usefulness of the tables and showing the impact of the bias on the acquisition process. 

 Several of the graphs and tables included in this section show that as the number of 

censored observations increases (fewer failures), the bias increases.  That increase is quantified 

in Tables 1 and 2 for each of the two methods using a sample size of 10, an 80% confidence 

level, and varying the number of failures.  Based on the results of the simulation study as shown 

in Tables 1 and 2, the graphical output of the simulation study (Appendix B) was run using the 

Fisher-Matrix method only, as it consistently produced the greatest amount of bias and is usually 

the default method used by the listed software packages.     

 Appendix B is divided into six sections; one section for each reliability value.  Each 

section is sub-divided by the population size (10 and 20). A graph showing the output of the 

simulation is displayed for each number of failures that occurred during the test period.  For 

example, in Appendix B, Sections A and B contain the results of the simulation study for a 

contractual 99% reliability.  Section A lists the results for a sample size of ten (10) and shows 

four graphs, one for each of the simulated failures (3, 5, 7, 9), while Section B displays similar 

graphs, but shows the results of using a sample size of twenty (20). 

B. SUMMARY OF GRAPHS 

 Several observations are evident and worthwhile mentioning in this section.  First, by 

comparing the simulation output of either coverage method in any of the reliability series shown 

in the body of this thesis, one can see the bias in the confidence interval increases (the simulation 

value gets farther away from the diagonal line) as the amount of censoring increases (i.e. number 

of failures in the test sample size decrease from nine to seven to five, etc.).  This effect is 
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graphically displayed in Figure 11 below, where all four of the different failures are plotted 

simultaneously on one graph for the Fisher-Matrix (FM) method, using a 98% reliability and a 

sample size of 10.  The most error in the confidence bounds occurred when the data is heavily 

censored (i.e., only three failures and seven still working). 

Actual vs. Requested Coverage for N= 1200 , n= 10 , f=3,5,7,9

Requested Coverage

A
ct

ua
l C

ov
er

ag
e

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Weibull parameters: beta= 2 , eta= 1000 , Reliability =  98 %

 
Figure 12.   A graph showing an increasing error in the confidence bounds as the numbers of 

failures decrease for the Fisher-Matrix Method for 98% reliability and a test 
population of 10.   

 

Note:  The data is the result of 1200 Monte Carlo 
simulations using S-Plus with SPLIDA.  The colors 
are in order of closest to the diagonal line to farthest 
away.  (green = 9 failures, blue  = 7 failures, red = 5 
failures, black = 3 failures) 

 The second noticeable finding in this simulation study is that the Fisher-Matrix method of 

determining confidence bounds has more bias than the Likelihood Ratio Bounds method (LRB).   

The small sample size coupled with censored data has more of an effect on the FM method than 

the LRB method and supports the theorists who have asserted this point for years.  Tables 1 and 

2 quantify the bias for each of the two methods using a sample size of 10, an 80% confidence 

level, and varying the number of failures.   
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 Based on the results of the simulation study as shown in Tables 1 and 2, the graphical 

output (Appendix B) of the simulation study only was run using the FM method as it consistently 

produced the greatest amount of bias.  The following tables are based on 10000 iterations from 

using the Monte Carlo code written for this thesis. 

 

Reliability Number 

of 

Failures   99%        98%        97%        96%         95%        90% 

3 20% 18.8% 18.8% 16.3% 16.3% 5% 

5 17.5% 16.3% 13.8% 13.8% 13.8% 11.3% 

7 15% 13.8% 12.5% 13.8% 12.5% 10% 

9 13.8% 12.5% 11.3% 13.8% 13.8% 11.3% 

 
Table 1.   Percent error in the confidence bounds using the Fisher-Matrix Method (FM), a 

sample size of 10, and an 80% (actual) confidence level.  (Where the Error = abs 
[(Required-Actual)/Actual] x100%). 



 

 22

 

Reliability Number 

of 

Failures    99%       98%        97%        96%         95%        90% 

3 13.8% 12.5% 13.8% 8.8% 8.8% 0% 

5 11.3% 10% 11.3% 8.8% 11.3% 6.3% 

7 8.8% 11.3% 11.3% 7.5% 6.3% 6.3% 

9 6.3% 8.8% 19% 11.3% 10% 11.3% 

 
Table 2.   Percent error in the confidence bounds using the Likelihood Ratio Bounds (LRB) 

method, a sample size of 10, and an 80% (actual) confidence level. (Where the Error 
= abs [(Required-Actual)/Actual] x100%). 

 
 

C. ERROR CORRECTION USING THE CATALOG 
 The following tables summarize the required value for the FM method that one must 

specify in order to obtain an 80% confidence bound for each of the simulations in this thesis.  

These values can be read directly from the graphs in Appendix B or can be produced by the 

simulation code running the subroutine get.hartley.lcb’ and are representative of the information 

available in the Appendix.  The 80% confidence bound was chosen as a demonstration of the 

information available from the catalog.   

 Users of this catalog must specify the “Requested” value that is read from the appropriate 

graph that meets their particular needs and meets the small sample criteria with censored data.  

So for a 97% reliability and an 80% confidence for a sample size of 10 with 5 failures, one 

would have to specify an 89% confidence level in their software in order to meet a true 80% 

confidence as required by the specification. 
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Reliability Number of 

Failures   99%                98%               97%                96%               95%              90% 

3 99.99 99.98 99.98 99.97 99.97 99.7 

5 99.04 98.69 98.68 98.17 98.16 97.54 

7 96.84 96.40 95.94 95.71 96.06 94.60 

9 94.20 93.65 94.14 93.76 93.81 93.09 

Table 3.   Summary of the required confidence using the Fisher-Matrix method (FM) and an 
actual 80% confidence using a Monte Carlo simulation with a sample size of 10 with 

3, 5, 7, & 9 failures for 99%, 98%, 97%, 96%, 95%, and 90% reliability. 
 

Reliability Number of 

Failures   99%                 98%               97%               96%               95%              90% 

3 99.99 99.98 99.97 99.91 99.80 95.83 

5 99.02 98.63 98.68 98.41 97.91 95.28 

7 97.27 96.48 96.48 96.40 96.18 94.27 

9 95.40 94.85 94.67 93.86 93.85 92.25 

Table 4.   Summary of the required confidence using the Fisher-Matrix method (FM) and an 
actual 80% confidence using a Monte Carlo simulation with a sample size of 20 with 

3, 5, 7, & 9 failures for 99%, 98%, 97%, 96%, 95%, and 90% reliability. 
 

 Although Table 4 above shows values in the 90% reliability column for both three and 

five number of failures, the values are questionable to a degree.  The graphs of the simulation for 

these two failures (Appendix B, Section L) show an inflection point in the output data where the 

graph rises above the diagonal line (lower half).  This appears to be a result of the heavily 

censored data (only 3 of 20 and 4 of 20 failures) coupled with a low reliability (90%). The 

numbers appear to follow the trends in Table 4 and the upper half of the graphs in Appendix B, 

Section L are of similar magnitude as other graphs in that class, therefore I left the entries in 
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Table 4 and suggest they are reasonable for this thesis.  Clearly, however, small numbers of 

failures result in inaccurate coverage probabilities for low reliabilities.  This behavior has been 

confirmed by repeated trials and warrants further study. 

D. CODE MODIFICATION FOR SPECIFIC APPLICATIONS 
 The S-Plus code that was used in this thesis can be modified to change many of the 

parameters used to describe the life data analysis.  In particular, the sample size and number of 

failures can be specifically tailored to accommodate many users.     

 The first line of the code is the ‘function’ line and contains all of the relevant parameters 

including number of iterations (N), sample size (n), and number of failures (f), and confidence 

level (g).  The function line appears below as used in this thesis.   

get.hartley.lcb <- function(N = 10000, g = 0.95, n = 13, f = 10, alpha = 0.1, plot.it = F) 

E. TEST CASE 

 To demonstrate an application of the usefulness of the tables in this thesis and as another 

example of modifying the S-Plus simulation code, this section will replicate the results of a 

worked example in Lawless’ text on lifetime data [Ref; 10, p. 155].  In his text, he worked an 

example using failure times from a small sample of aircraft components with censored data.  His 

solution was based on the Weibull distribution and used tables that appeared in a technical report 

[Ref: 11] from Wright-Patterson AFB, OH to obtain a value for 90% reliability and a 95% lower, 

one-sided confidence bound.  The exact value of B10C95 obtained using the tables in Reference 

11, was (.105). 

 The data shown in the table below are the 10 failure times of aircraft components and the 

three censored times all stopped after the tenth failure.  The values of N = 13 and f = 10 were 

used as inputs to the S-Plus simulation code used in this thesis.  The function line of the code is 

shown below: 
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  function(N = 10000, n = 13, f = 10, alpha = 0.10, plot.it = T) 

 

Failure (F)/Censored(S) Time (hours) 

F 0.22 
F 0.5 
F 0.88 
F 1 
F 1.24 
F 1.33 
F 1.54 
F 1.76 
F 2.5 
F 3 
S 3 
S 3 
S 3 

Table 5.   Aircraft component failure times in hours. [Ref:10, p. 155] 

 

 The output of the simulation code for the FM method is shown in Figure 12.  Using the 

same graphical technique that was described in Figure 9, the ‘required confidence’ was located 

by drawing a horizontal line from the y-axis at the confidence value your specification calls for 

(in this case 95%), and intersecting with the simulation output.  Then drawing a vertical line 

down to the x-axis and estimating the new confidence value that you need to request from the 

contractor or testing organization (approximately 99.5%). 
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Actual vs. Requested coverage for N= 10000 , n= 13 , and f = 10

Requested coverage
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Figure 13.   Output of the S-Plus simulation code using N =13 and f =10 derived from 

Example 4.1.1. [Ref: 10] 
 

 An output of the S-Plus simulation code subroutine ‘get.hartley.lcb’ is shown below.  The 

first line matches the exact value of B10C95 as calculated by Lawless [Ref: 10, p. 155] and 

indicates the simulation code is working correctly.  The following lines are the final lines of the 

S-Plus output and specifies the ’required’ confidence directly without using the graphs.   

The true 0.1 point is 0.1053 

We have a sample of size 13 and 10 failures.  

To get a 95 percent actual confidence level, you must request a 99.85 percent FM 

confidence level. 

 The results of this simulation output are close to the estimated value of the required 

confidence using the visual aid of drawing the line across and down from Figure 13 as shown 

above (approximately 99.5%).  The simulation output may provide a more accurate confidence 

value for those who have S-Plus and SPLIDA as analysis tools but the graph technique using the 

graphs in Appendix B is also quite good. 
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 As a final verification of the simulation code and another indication that the ‘required’ 

confidence from the simulation is credible, I analyzed the Lawless data in another life-data 

analysis program called Weibull++6 [Ref. 12].  In particular, I was interested in obtaining the 

B10C95 ( shorthand for the 95% lower confidence bound for the tenth percentile) value using 

both the original confidence value (95%) , and then recalculating using the value obtained from 

the S-Plus output (either from the graphs or the direct readout from the subroutine 

‘get.hartley.lcb’).  

 Using the data from Table 5, the Weibull++6 program provided the following graph 

shown in Figure 14, as well as Tables 6 and 7. 
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Figure 14.   The output of the Weibull++6 software package used to determine the B10C95 

value for the S-Plus simulation code. 
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User Input:  
BX% information at: =  10 
Confidence Bounds Used:  1-Sided 
Confidence Bounds Method:  Fisher Matrix 

Confidence Level: =  0.95 
Weibull++ Output :  
Time: =  0.459 
Lower Limit: =  0.205 
Confidence: =  1S @ 0.95 

Table 6.   Output from the Weibull++6 Life Data Analysis Software package used for 
comparison with Example 4.1.1. [Ref: 10, p. 155]   

 

 Table 6 shows that the lower limit using the Fisher-Matrix method was (.205) compared 

to the exact value of (.105) obtained by Lawless [Ref: 10, p. 155].  The B10C95 value using the 

original confidence value of 95% is almost twice the exact value calculated by Lawless!  

 The ‘required’ confidence value of 99.85% from the subroutine ‘get.hartley.lcb’ was then 

used in the Weibull++6 software package to determine a new lower limit.  Table 7 displays the 

result of the calculations and shows the lower limit of (.1073) using the estimated value from the 

simulation code for the confidence value.  The B10C95 now compares favorably to the exact 

value of (.105) as determined by Lawless.   

 
User Input:  
BX% information at: =  10 
Confidence Bounds Used:  1-Sided 
Confidence Bounds Method:  Fisher Matrix 

Confidence Level: =  0.9985 
  
Weibull++ Output :  
Time: =  0.459 
Lower Limit: =  0.1073 
Confidence: =  1S @ 0.9985 

Table 7.   Output from the Weibull++6 Life Data Analysis Software package using the 
confidence value from the S-Plus simulation code for Example 4.1.1. [Ref: 10, p. 155]   
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
 The objective of this thesis was to graphically show that analyzing small sample sizes, 

commonly found in most Developmental Test (DT) scenarios, with software designed for large 

samples, impacts many areas in the acquisition analysis and the small error that has been 

acknowledged for years has a large impact in today’s economy.  The results of the simulation 

study in this thesis quantify the bias in one-sided reliability confidence bounds when using small 

samples and censored data.   

 Tables 1 and 2 in the previous section are tabular displays of the error in the confidence 

bounds and show that for this simulation study the error can be as much as 20%.  The results 

section conclusively shows that the Likelihood Ratio Bounds method (13.8% error) has less bias 

than the more commonly used Fisher-Matrix method (20% error) especially for high reliability 

when the number of failures is small.    

 The test case shown in the previous section also illustrates the impact of small sample 

size analysis using actual aircraft component data.  The comparison of the B10C95 using the 

original confidence value in the Weibull++6 software package, to the exact value calculated by 

Lawless shows almost a 100% increase (.105 versus .205).  This increase can directly translate 

into overestimating inspection times for mission critical components and purchasing and storing 

of unnecessary spares, increasing the logistic tail for combat deployments. 

 The bias can be reduced when using standard software packages to analyze small sample 

with censored data by either the graphical technique using the graphs in Appendix B, or running 

the simulation code using S-Plus with the embedded SPLIDA life data routine.  The test example 

showed that using either technique can reduce the error from 95.23% (using the 95% confidence) 

to less than 1.9% (using the ‘required’ 99.85% confidence obtained from Figure 13 and the 

output of ‘get.hartley.lcb’). 

 Although increasing the number of items under test can increase the confidence, this 

thesis shows that the major influence is the small number of failures that occur during the test 

time.  Many of the governments’ contracts specify quantities such as reliability and confidence 



 

 30

but we can’t mandate the number of test items because of the constraint to minimize costs and 

the ever-present desire to shorten the test time.  An unknown author writes what is known as The 

Paradox of Reliability Analysis,  

The more reliable a product is, the harder it is to get the failure data needed to 
“prove” it is reliable! 

However, we can now argue for better analysis by understanding the bias associated with 

small samples with censored data and modifying our requirements to account for the error.   

B. RECOMMENDATIONS 
 Two improvements to the simulation code appeared during the writing of this thesis. The 

first and most important improvement would be to modify the simulation code for other life data 

analysis software packages.  Although the use of S-Plus is widespread in industry, many other 

analysis packages exist and are used worldwide.  The second improvement would be to write a 

simulation code for other high-speed computer software programs that are not strictly life data 

analysis tools.  For example, Dean M. Ford from the Delphi Automotive Systems has developed 

a simulation code for the Weibull distribution that runs on Excel and is much faster than the S-

Plus code used in this thesis.   

 Finally, in addition to improving the speed of the code used in this thesis, this code could 

easily be extended to include other distributions such as exponential, lognormal and gamma.  An 

efficient simulation tool or catalog listing all of the location-scale distributions showing the 

required confidence for small samples would be an invaluable tool for anyone dealing with life 

data analysis, reliability, and warranty contracts.   
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APPENDIX A 

 This section contains the S-Plus code that was written for this thesis.  It performs a Monte 

Carlo simulation for the Weibull function using the number of test items and the number of 

failed units.  This code can be copied and used in the function command in S-Plus.  After naming 

the function, run it by calling the function and specifying the number of iterations in parentheses 

similar to the following line: > get.hartley.lcb(N = 10000).  If you require a specific confidence 

level and would like the S-Plus program to calculate determine that value for you, modify the 

‘get.hartley.lcb code in the function line below by specifying the reliability (alpha), and save 

‘get.hartley.lcb.  Now run the function ‘get.hartley.lcb and set the variable ‘g’ to the confidence 

you want.  The program will calculate the required confidence level and run the function 

resulting in a plot of the actual versus required confidence for all confidence values.  (Note: The 

SPLIDA subroutine must be loaded into the S-Plus code in order for this code to work.) 

 

####################################### 
# This program is the final working version of Mike Hartley's 
# routine to get equivalent confidence levels for BXLCBYY 
# 
#  to use, load the first function.  A typical function call is the 
#  last line of the code below. 
#   
# 2/29/04; DHO 
# 
# “Team players use S Plus, but it takes the JV longer....” 
# 
######################################### 
 
 
get.hartley.lcb<-function(N=10000, g=.95, n=13, f=10, alpha = 0.1, plot.it=F) 
 {  
   
  #bad parameter traps 
  if(alpha > 0.5) 
    stop(“Try another alpha. \n \n”) 
     
  if(g>=1 || g<=0) stop (“Try another g. \n \n”) 
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  true.pt<-exp(qsev(alpha)) # the true percentile 
  cat(“The true”, alpha, “point is”, true.pt, “\n”) 
 
  test.out<-SingleDistSim(number.sim=N,”Weibull”,sample.size=n,  
       censor.type = “Type 2”, fail.number = f, kprint = 0) #gets a sample from the weibull of 

size N 
   
  mu<-test.out$theta.hat[,1] 
  sigma<-test.out$theta.hat[,2] 
  var.mu<-test.out$vcvobs[,1] 
  var.sigma<-test.out$vcvobs[,3] 
  covar<-test.out$vcvobs[,2] 
   
  tp<-exp(mu + qsev(alpha)*sigma) # tp is the vector of point estimates from the 

samples 
   
  se.tp<-  tp *sqrt(var.mu + 2* qsev(alpha) *covar +(qsev(alpha))^2 * var.sigma) #the 

vector of SEs for tp 
   
  ecl<-(pnorm(tp*log(tp/true.pt)/se.tp)) #the CL necessary to cover the true value for each 

sample 
 
  ecl<-sort(ecl) #the sorted ECLs 
  
 if (plot.it==T){ 
 
   plot(ecl,((1:N)-.5)/N, type='n', xlab='Requested coverage', ylim=c(0,1), ylab='Actual 

coverage', main = paste(“Actual vs. Requested coverage for N=“, N, “, n=“,n,”, and f =“, f)) 
   lines(ecl,((1:N)-.5)/N, col=2) 
   mtext(paste(“Quantiles for p = “,alpha)) 
   abline(0,1,col=1) 
   legend(0.2,0.9,c(“FM”), lty=c(1,1),col=c(2,2)) 
  } 
   
 cat(paste(“We have a sample of size”, n, “ and “, f,” failures. \n”)) 
 
 cat(paste(“To get a”, 100*g, “ percent Hartley  confidence level, you must request a”, 
  100*quantile(ecl,g), “percent FM confidence level. \n”)) 
  
 } 
get.hartley.lcb(N=10000, n=13, f=10, alpha = .1,  g = .95, plot.it = T) 
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APPENDIX B 

A. RELIABILITY = 99%, SAMPLE SIZE = 10 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 9
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B. RELIABILITY = 99%, SAMPLE SIZE = 20 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 9
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C. RELIABILITY = 98%, SAMPLE SIZE = 10 

 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 9
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D. RELIABILITY = 98%, SAMPLE SIZE = 20 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 7

Requested coverage

A
ct

ua
l c

ov
er

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantiles for p =  0.02

FM

 

 

 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 9
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E. RELIABILITY = 97%, SAMPLE SIZE = 10 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 9
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F. RELIABILITY = 97%, SAMPLE SIZE = 20 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 9

Requested coverage

A
ct

ua
l c

ov
er

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantiles for p =  0.03

FM

 

 



 

 45

G. RELIABILITY = 96%, SAMPLE SIZE = 10 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 9
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H. RELIABILITY = 96%, SAMPLE SIZE = 20 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 9
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I. RELIABILITY = 95%, SAMPLE SIZE = 10 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 9
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J. RELIABILITY = 95%, SAMPLE SIZE = 20 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 9
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K. RELIABILITY = 90%, SAMPLE SIZE = 10 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 7

Requested coverage

A
ct

ua
l c

ov
er

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantiles for p =  0.1

FM

 

 

 

Actual vs. Requested coverage for N = 10000 , n = 10 , and f = 9
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L. RELIABILITY = 90%, SAMPLE SIZE = 20 

Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 3
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 5
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 7
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Actual vs. Requested coverage for N = 10000 , n = 20 , and f = 9
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